OpenCV (Open Source Computer Vision) is a library to help the development of computer vision software. To perform any real-time image processing with the companion camera, we highly suggest OpenCV to do the job.

Take a look in the OpenCV website and tutorials for further information.


OpenCV support both Python 2 and Python 3, it's recommended to install it via your package manager.


Ubuntu 16.04

# Update list of available packages
sudo apt update

# Install opencv and dependencies
sudo apt install python-numpy python-opencv libopencv-dev

# Install gstreamer and plugins
sudo apt install python-gst-1.0 gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-libav


# Update list of available packages
sudo apt update

# Install opencv and dependencies
sudo apt install python-numpy python-opencv libopencv-dev

# Install gstreamer and plugins
sudo apt install python-gst-1.0 gstreamer1.0-plugins-good \
    gstreamer1.0-plugins-bad gstreamer1.0-libav \
    gir1.2-gst-plugins-base-1.0 gir1.2-gstreamer-1.0


Take a look in the diagram of the software components to see how the communication between all the modules work.

The video raw data goes to gstreamer that send it via udp (:5600) inside the companion board to the topside computer.

Top side computer

To capture video stream with the python script and QGC at same time, it's necessary to modify gstreamer options, changing ! udpsink host= port=5600 to ! multiudpsink clients=, and add the new port parameter when calling Video (video = Video(port=4777)).

Receive and display stream

#!/usr/bin/env python
BlueRov video capture class

import cv2
import gi
import numpy as np

gi.require_version('Gst', '1.0')
from gi.repository import Gst

class Video():
    """BlueRov video capture class constructor

        port (int): Video UDP port
        video_codec (string): Source h264 parser
        video_decode (string): Transform YUV (12bits) to BGR (24bits)
        video_pipe (object): GStreamer top-level pipeline
        video_sink (object): Gstreamer sink element
        video_sink_conf (string): Sink configuration
        video_source (string): Udp source ip and port

    def __init__(self, port=5600):

            port (int, optional): UDP port


        self.port = port
        self._frame = None

        # [Software component diagram](
        # UDP video stream (:5600)
        self.video_source = 'udpsrc port={}'.format(self.port)
        # [Rasp raw image](
        # Cam -> CSI-2 -> H264 Raw (YUV 4-4-4 (12bits) I420)
        self.video_codec = '! application/x-rtp, payload=96 ! rtph264depay ! h264parse ! avdec_h264'
        # Python don't have nibble, convert YUV nibbles (4-4-4) to OpenCV standard BGR bytes (8-8-8)
        self.video_decode = \
            '! decodebin ! videoconvert ! video/x-raw,format=(string)BGR ! videoconvert'
        # Create a sink to get data
        self.video_sink_conf = \
            '! appsink emit-signals=true sync=false max-buffers=2 drop=true'

        self.video_pipe = None
        self.video_sink = None

    def start_gst(self, config=None):
        """ Start gstreamer pipeline and sink
        Pipeline description list e.g:
                'videotestsrc ! decodebin', \
                '! videoconvert ! video/x-raw,format=(string)BGR ! videoconvert',
                '! appsink'

            config (list, optional): Gstreamer pileline description list

        if not config:
            config = \
                    'videotestsrc ! decodebin',
                    '! videoconvert ! video/x-raw,format=(string)BGR ! videoconvert',
                    '! appsink'

        command = ' '.join(config)
        self.video_pipe = Gst.parse_launch(command)
        self.video_sink = self.video_pipe.get_by_name('appsink0')

    def gst_to_opencv(sample):
        """Transform byte array into np array

            sample (TYPE): Description

            TYPE: Description
        buf = sample.get_buffer()
        caps = sample.get_caps()
        array = np.ndarray(
            buffer=buf.extract_dup(0, buf.get_size()), dtype=np.uint8)
        return array

    def frame(self):
        """ Get Frame

            iterable: bool and image frame, output
        return self._frame

    def frame_available(self):
        """Check if frame is available

            bool: true if frame is available
        return type(self._frame) != type(None)

    def run(self):
        """ Get frame to update _frame


        self.video_sink.connect('new-sample', self.callback)

    def callback(self, sink):
        sample = sink.emit('pull-sample')
        new_frame = self.gst_to_opencv(sample)
        self._frame = new_frame

        return Gst.FlowReturn.OK

if __name__ == '__main__':
    # Create the video object
    # Add port= if is necessary to use a different one
    video = Video()

    while True:
        # Wait for the next frame
        if not video.frame_available():

        frame = video.frame()
        cv2.imshow('frame', frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
 * BlueRov video capture example
 * Based on:

// Include atomic std library
#include <atomic>

// Include gstreamer library
#include <gst/gst.h>
#include <gst/app/app.h>

// Include OpenCV library
#include <opencv.hpp>

// Share frame between main loop and gstreamer callback
std::atomic<cv::Mat*> atomicFrame;

 * @brief Check preroll to get a new frame using callback
 * @return GstFlowReturn
GstFlowReturn new_preroll(GstAppSink* /*appsink*/, gpointer /*data*/)
    return GST_FLOW_OK;

 * @brief This is a callback that get a new frame when a preroll exist
 * @param appsink
 * @return GstFlowReturn
GstFlowReturn new_sample(GstAppSink *appsink, gpointer /*data*/)
    static int framecount = 0;

    // Get caps and frame
    GstSample *sample = gst_app_sink_pull_sample(appsink);
    GstCaps *caps = gst_sample_get_caps(sample);
    GstBuffer *buffer = gst_sample_get_buffer(sample);
    GstStructure *structure = gst_caps_get_structure(caps, 0);
    const int width = g_value_get_int(gst_structure_get_value(structure, "width"));
    const int height = g_value_get_int(gst_structure_get_value(structure, "height"));

    // Print dot every 30 frames
    if(!(framecount%30)) {

    // Show caps on first frame
    if(!framecount) {
        g_print("caps: %s\n", gst_caps_to_string(caps));

    // Get frame data
    GstMapInfo map;
    gst_buffer_map(buffer, &map, GST_MAP_READ);

    // Convert gstreamer data to OpenCV Mat
    cv::Mat* prevFrame;
    prevFrame = cv::Mat(cv::Size(width, height), CV_8UC3, (char*), cv::Mat::AUTO_STEP));
    if(prevFrame) {
        delete prevFrame;

    gst_buffer_unmap(buffer, &map);

    return GST_FLOW_OK;

 * @brief Bus callback
 *  Print important messages
 * @param bus
 * @param message
 * @param data
 * @return gboolean
static gboolean my_bus_callback(GstBus *bus, GstMessage *message, gpointer data)
    // Debug message
    //g_print("Got %s message\n", GST_MESSAGE_TYPE_NAME(message));
    switch(GST_MESSAGE_TYPE(message)) {
        case GST_MESSAGE_ERROR: {
            GError *err;
            gchar *debug;

            gst_message_parse_error(message, &err, &debug);
            g_print("Error: %s\n", err->message);
        case GST_MESSAGE_EOS:
            /* end-of-stream */
            /* unhandled message */
    /* we want to be notified again the next time there is a message
     * on the bus, so returning TRUE (FALSE means we want to stop watching
     * for messages on the bus and our callback should not be called again)
    return true;

int main(int argc, char *argv[]) {
    gst_init(&argc, &argv);

    gchar *descr = g_strdup(
        "udpsrc port=5600 "
        "! application/x-rtp, payload=96 ! rtph264depay ! h264parse ! avdec_h264 "
        "! decodebin ! videoconvert ! video/x-raw,format=(string)BGR ! videoconvert "
        "! appsink name=sink emit-signals=true sync=false max-buffers=1 drop=true"

    // Check pipeline
    GError *error = nullptr;
    GstElement *pipeline = gst_parse_launch(descr, &error);

    if(error) {
        g_print("could not construct pipeline: %s\n", error->message);

    // Get sink
    GstElement *sink = gst_bin_get_by_name(GST_BIN(pipeline), "sink");

     * @brief Get sink signals and check for a preroll
     *  If preroll exists, we do have a new frame
    gst_app_sink_set_emit_signals((GstAppSink*)sink, true);
    gst_app_sink_set_drop((GstAppSink*)sink, true);
    gst_app_sink_set_max_buffers((GstAppSink*)sink, 1);
    GstAppSinkCallbacks callbacks = { nullptr, new_preroll, new_sample };
    gst_app_sink_set_callbacks(GST_APP_SINK(sink), &callbacks, nullptr, nullptr);

    // Declare bus
    GstBus *bus;
    bus = gst_pipeline_get_bus(GST_PIPELINE(pipeline));
    gst_bus_add_watch(bus, my_bus_callback, nullptr);

    gst_element_set_state(GST_ELEMENT(pipeline), GST_STATE_PLAYING);

    // Main loop
    while(1) {

        cv::Mat* frame = atomicFrame.load();
        if(frame) {
            cv::imshow("Frame", atomicFrame.load()[0]);

    gst_element_set_state(GST_ELEMENT(pipeline), GST_STATE_NULL);
    return 0;


Before running any program in the companion board, keep in mind that the hardware of a SBC may not run with high performance or with real-time requirements.

It's possible to get some frames while the stream is in progress, however this can result in some delays in the top side computer.

Get a frame and save it

import numpy as np
import cv2

cap = cv2.VideoCapture(0)

# Capture frame-by-frame
ret, frame =

# Save the frame
cv2.imwrite('frame.png', frame)

# When everything done, release the capture

Get a frame from gstreamer and save it

Update the gstreamer options to enable multiudpsink like in Top side computer, but changing the ip of the second output to

# Add or use the Video class here

if __name__ == '__main__':
    # Create the video object
    # Add port= if is necessary to use a different one
    video = Video(port=4777)

    # Wait for the next frame
    while not video.frame_available():

    frame = video.frame()
    # Save the frame
    cv2.imwrite('frame.png', frame)

results matching ""

    No results matching ""